

A. Nikitenko CERN and ITEP/Moscow

Triggering on SUSY H/A->2 τ , τ -> hadrons

- motivation for Tau trigger
 - physics simulation on H/A -> 2τ -> 2jet by R. Kinnunen, D. Denegri CMS Note 1999/037
- □ L1 Tau trigger

Algorithm and ORCA code by S. Dasu

- □ L2.0 Calorimeter Tau trigger
 - S. Eno, R. Kinnunen, A. Nikitenko
- □ PossibleTau Trigger with Pixel Detector

track/vertex finding algo and ORCA code by D. Kotlinski

Why do we need H->2τ channels?

A large region of **MSSM** parameters M_A , tan(β) can be explored already with low lumi data combining $e+\mu$, $e/\mu+jet$, 2 jets final states

the black hole is not accessible with 30 fb $^{\text{-}1}$

Why do we need high lumi data for H->2 τ

 \Box to have an access to the black hole area of M_A - tan β plane :

150 < M_A <400 GeV, $tan\beta$ < 10

to measure H/A Higgs mass and tanβ with as high as possible statistics

Why do we need Tau Trigger for H->2 τ ->2j

1 kHz rate thresholds at generator level : 1J > 165 GeV, 2J > 120 GeV => too high for τ -jets from the low mass Higgs of 200 - 300 GeV

L1 Tau trigger must enhance the efficiency for triggering on taus that produce low E_t jets

Updated Jet, τ Algorithms

Jet or τE_{τ}

- 12x12 trigger tower E_{τ} sums sliding in 4x4 steps with central 4x4 > others τ algorithm (isolated narrow energy deposits)
- Redefine Jet as τ if none of the 9 4x4 region $\tau\text{-veto}$ bits are on Output
 - Sorted top 4 jets & top 4 τ-jets & counts of jets above programmable thresholds

L1 Tau trigger

efficiency of τ-id in gg->bbA, A->2τ->h⁺h⁻+X

efficiency of τ -id v.s. E_{t}^{τ -jet

efficiency of τ -id v.s. η^{τ -jet

L1 Tau trigger

Efficiency for gg->bbA/H, A/H-> 2τ ->h⁺+h⁻+X

relative to "off-line" events: $E_t^{\tau-jet}$ >60 GeV, $|\eta^{\tau-jet}|$ <2.4, 1 prong τ 's

HIGGS MASS	OLD TRIGGER	NEW TAU	NEW TAU+JET
200 GEV	0.29	0.64	0.64 (0.65)
500 GEV	0.91	0.81	0.89 (0.95)
L1 RATE	5.5 kHz	4.0 KHz	4.8 (6.3) KHz

1j > 100 GeV 1τ > 80 GeV 1τ > 80 GeV

2i > 60 GeV $2\tau > 50 \text{ GeV}$ $2\tau > 50 \text{ GeV}$

3j > 30 GeV 1 cj > 200(120) GeV

4j > 20 GeV 2 cj > 100(80) GeV

A big improvement with the new trigger for the low mass Higgs

L1 Tau trigger

Purity of L1 Tau's in gg->bbA, A-> 2τ ->h⁺ + h⁻ + X events passed L1 and off line selections

HIGGS MASS	1-ST L1 TAU JET* IS NOT A TAU	2-ND L1 TAU JET IS NOT A TAU
200 GEV	(1.6+-0.5) %	(14.3+-0.2) %
500 GEV	(1.3+- 0.3)%	(45.0+-0.2) %

L2.0 Tau trigger operates on 1-st L1 Tau Jet

^{* 1-}ST L1 JET IS A JET WITH A HIGHEST E_{T} ; JETS ARE ORDERED IN E_{T} IN THE TRIGGER OBJECT LIST

L2.0 Tau trigger

1. reconstruct a Jet*

2. calculate e.m. isolation:

$$P_{isol} = E_t^{ecal}(R < 0.4) - E_t^{ecal}(R < 0.13)$$

3. accept event if P_{isol} < P_{cut}

* At L2.0 Jet is reconstructed in the location of the L1 highest E_t Tau with an iterative cone of size 0.6 and ecal+hcal towers as an input

L1 and L2.0 Tau trigger rates

Single Jet rates

Double Jet rates

red - L1 Tau, blue - L2.0 Tau

E_tthr (12x12), GeV

E_t^{thr} (12x12), GeV

L2.0 Tau trigger

out off time pileup and e.m. isolation

L2.0 Tau Trigger efficiency v.s. reduction of L1 Tau Trigger rate

L2.0 Tau trigger

efficiency of L2.0 for τ 's passed L1 Tau id

efficiency v.s. $E_t^{\tau-jet}$

efficiency v.s. $\eta^{\tau\text{-jet}}$

L1, L2.0 Calorimeter Tau Trigger studies are summarized in CMS Note 2000/055 by S. Eno, S. Dasu, R. Kinnunen, A. Nikitenko, W. Smith

Tracker isolation of τ -jet candidates as a next step to reduce rate following the off-line selection - 1 prong τ -jet

Track/vertex finding with Pixel Detector only (10 % of all tracker data) looks very promising

algorithm and ORCA code by D. Kotlinski PSI. CMS IN 2000/022

Pixel Track and Vertex Finder Algorithm.

- 1. φ matching of 2 hits
- **2.** Z matching: $|Z_0| < 15$ cm
- 3. matching with 3-d hit
- 4. primary vertices (PV) with histogr. method
- 5. p_t and charge of the track with 3 points
- **6.** find "signal" PV (criteria of N_{track} and Σp_t^{tr})

Pixel Track Finder. Performance I

- A. Track/Vertex finding efficiency see next slides
- B. Track momentum estimate up to 20 GeV : $\sigma(\Delta p_T)/p_T=(3.6+1.7 p_T[GeV]) \%$
- C. Track charge estimate 100% efficient up to 20 GeV At 40 GeV - 2% error
- D. Impact Parameter poor resolution: 70 (125) μm at 10 (1) GeV

Efficiency of a cut on the track momentum measured with Pixel Detector only

Pixel Track Finder. Performance II

Track finding efficiency and ghost rates with 3 pixel layers at high luminosity

	efficiency		ghost rate	
event type	any p _t ^{rec}	p _t ^{rec} > 1 GeV	any p _t rec	p _t ^{rec} > 1 GeV
gg->bbA(500 GeV)->2τ->h ⁺ h ⁻ X	0.96	0.93	0.09	0.04
QCD di-jets, E _t ^{jet} > 60 GeV	0.94	0.93	0.10	0.05

efficiency = N_{good} / N_{acc} , ghost rate = N_{ghost} / N_{reco}

good track - reco track associated with 3 hits of the same MC track of $p_t > 1$ GeV

accepted track - MC track of $p_t > 1$ GeV generated 3 hits in the pixel barrel

ghost track - a track with at least one hit came from a different MC track

Application I. Tau Trigger at Lvl -3.

Jet direction given by L2.0 Tau object

Possible LvI-3 τ -trigger

- Tracks are reconstructed with
 pixel layers only within a cone given by L2.0 Jet axis
- 2. Isolation criteria is applied in a big cone (0.3-0.4) relative to the tracks in a small cone (~0.1). p_t^{tr} > 1-2 GeV

Application I. Tau Trigger at Lvl -3.

preliminary study (cms116+fort/C++ analysis) looks very promising.

L1/L2.0 calo preselection - A. Nikitenko. Pixel Track Finder - D. Kotlinski; high luminosity

Signal : gg->bbA(500 GeV), A->2 τ ->2jets, Et $^{\tau$ -jet} >60 GeV, $|\eta^{\tau$ -jet}| < 1.6 and after L1/L2.0 Bkg: QCD di-jets, Et jet >60 GeV, $|\eta^{jet}|$ < 1.6 and after L1/L2.0 triggers (old ones)

results will be checked with updated L1/L2.0 Tau and September ORCA4 run data

The way proposed by CMS SW people to start tracker trigger studies: L1,L2.0 Tau filter -> User Collection -> deep copy -> add TkDigi has been passed. Many thanks Vincenzo, Veronique, Stephan, Teddi

Test: Pixel Rhits for gg->bbH, H->2τ->2j events from jetmet UF (cms116) passed L1,L2 Tau filter produced with a part of Danek PixelReconstruction code in orca430

cms120 events with 3 pixel layers are arriving